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Autonomous Hamiltonian systems

Consider an N degree of freedom autonomous
Hamiltonian system having a Hamiltonian function of the

form: positions momenta
A A

H(G1,Gz5e+»Uns P1.Pse-sP1)

The time evolution of an orbit (trajectory) with initial
condition

P(O):(ql(O), qz(o)a---an(O)1 pl(O), p2(0)9---9p|\|(0))

IS governed by the Hamilton’s equations of motion




Symplectic Integration schemes

Formally the solution of the Hamilton equations of motion can be written

as. v n
X H,X) =L, X = X=Y X =6t X
n>0 '~

dt
where X is the full coordinate vector and L., the Poisson operator:
N
LHf:Z oH of oH of
op; 0q; 0q; op;

j=1

If the Hamiltonian H can be split into two integrable parts as H=A+B, a
symplectic scheme for integrating the equations of motion from time t to
time t+t consists of approximating the operator @™+ by

j
eTLH — eT(LA"'LB) — HeCiTLAedi‘rLB + O(Tn+l)
i=1
for appropriate values of constants c;, d;. This is an integrator of order n.

So the dynamics over an integration time step t iIs described by
a series of successive acts of Hamiltonians A and B.




Symplectic Integrator SABA,C

The operatorerl‘“can be approximated by the symplectic integrator
[Laskar & Robutel, Cel. Mech. Dyn. Astr. (2001)]:

SABAZ — eclz'LA edlz'LB eCZTLA edlz'LB eclz-LA
1 3 J3 1

Wlth Cl:E-?’ CZ:?, d1:§.

The integrator has only small positive steps and its error is of order 2.

In the case where A is quadratic in the momenta and B depends only on
the positions the method can be improved by introducing a corrector C,
having a small negative step: L C

C =g 288
2-\3

I c=———.
with 2

Thus the full integrator scheme becomes: SABAC, = C (SABA,) C and its
error is of order 4.



Interplay of disorder and nonlinearity

Waves in disordered media — Anderson localization
[Anderson, Phys. Rev. (1958)]. Experiments on BEC
[Billy et al., Nature (2008)]

Waves in nonlinear disordered media — localization or
delocalization?

Theoretical and/or numerical studies [Shepelyansky, PRL,
(1993) — Molina, Phys. Rev. B (1998) - Pikovsky &
Shepelyansky, PRL, (2008) - Kopidakis et al., PRL, (2008)]

Experiments: propagation of light in disordered 1d
waveguide lattices [Lahini et al., PRL, (2008)]

m-1)

ms i

Atomic density (atol

? 2D core




The Klein Gordon (KG) model

1 1
_Zpl +Eu| +4U +2W (U|+1'u|)2

with fixed boundary conditions Uy=p,=Uy+;=Pn+1=0. Typically N=1000.

- : 1 3
Parameters: W and the total energy E. & chosen uniformly from [E,E}

The discrete nonlinear Schrodinger (DNLS) eguation
We also consider the system:

N
_ : B .
_ZEI ‘l//l‘ +E“//|‘ '('//|+1'//| +‘//|+1‘//|)
1=1
where g chosen uniformly from {_V?V,V?V} and S isthe

nonlinear parameter.

Conserved quantities: The energy and the norm S = Z |¢//|| of the wave
packet.



Distribution characterization

We consider normalized energy distributions in normal mode (NM) space

E, with E_ = 1(A;2 + wZAZ) , where A is the amplitude
\ 4 2 \ 4 1 4

Zm Em

of the vth NM.

N N
Second moment: M, = Z(V -\7)2zv with v = sz,,
v=1I v=1

ZvE

1

IS

measures the number of stronger excited modes in z,. Single mode P=1,
equipartition of energy P=N.

Participation number: P =



The KG model

We apply the SABAC, integrator scheme to the KG Hamiltonian by using

the spllttlng
N ~
pI 1 1 2
= +—uI +=ut+——(u,, - ;)
< 47 2w
\ J
l_'_l ,
/ u; = u

é;TLA'{Elf; =P ETLB: = [_ (H + 3) + L( + -2 )] +
2 A ]9; . P = un€ + u; W Up_ |+ Uy up) |7+ py.

with a corrector term which corresponds to the Hamiltonian function:

C={{AB},B}= i[u, (& +u|2)—v%(u,_1 +u,,, -Zu,)} .

=1



The DNLS model

A 2" order SABA Symplectic Integrator with 5 steps, combined with
approximate solution for the B part (Fourier Transform): SIFT?

. 1, .
= Z% |+ ﬁ\vn (v tvaw). W =f(‘1' +ip,)

+ pl2 ﬂ\(ql t pI,) ‘_ 0,041 - Pr pn+1,j

EI
/T

J2aig(m=1)/IN
Ly, { qar = g cos(oyt) 4+ ppsin(o; 1), E m€

m=1

n, = pycos(at) — gy sin(w;T), - /
1; ! { o™LB: ¢ cp —‘Pq 2i cos(2a(g—1)/N)T

—2mil(g-1)/N
=L gt

q 1

ar = e + Blgt + p}H/2

\



The DNLS model

Symplectic Integrators produced by Successive Splits (SS)
g f 2
H = a2+ n2\+ P (a2 + n2) - )
5 .Z(\z (aF + p7)+ S(af+ p ) ol = P pmJ

| |
/Q; =41, B]/p}' =p;,\ BZ

q; = q cos(aT) + pysin(o; 1), {
P = prcos(apt) — g sin(o;7),

Using the SABA,, integrator we get a 2" order integrator with 13
steps, SS2: i
P {(3 g/?)'r}L

py = pr+ (g1 +q41)7 { g = q1— (pi—1 + piy1)T

=/ '{@-ﬁu-}m S [(3-@'}51\'[(3-@1-}81 v T, {(3-@1'}8‘
T —7T o B B1 e 6 e 6 628263 By Bze !



Different Dynamical Regimes

Three expected evolution regimes [Flach, Chem. Phys (2010) - Ch.S. & Flach,
PRE (2010) - Laptyeva et al., EPL (2010) - Bodyfelt et al., PRE (2011)]

A: width of the frequency spectrum, d: average spacing of interacting modes, 6 :
nonlinear frequency shift.

Weak Chaos Regime: <d, m,~t!3

Frequency shift is less than the average spacing of interacting modes. NMs are
weakly interacting with each other. [Molina, PRB (1998) — Pikovsky, &
Shepelyansky, PRL (2008)].

Intermediate Strong Chaos Regime: d<é<A, m,~tY2 — m,~t?3

Almost all NMs in the packet are resonantly interacting. Wave packets initially
spread faster and eventually enter the weak chaos regime.

Selftrapping Regime: 6>A

Frequency shift exceeds the spectrum width. Frequencies of excited NMs are
tuned out of resonances with the nonexcited ones, leading to selftrapping, while a
small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)].
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Different spreading regimes
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Different spreading regimes
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Crossover from strong to weak chaos

DNLS p=0.04,0.72,3.6 KGE=0.01,0.2,0.75
sE T T T F T T ] W=4

Average over 1000 realizations!

d(logm, )

a(logt) = d logt

4 a=1/2

1 a=1/3




Non-symplectic methods for the
DNLS model

In our study we also use the DOP853 integrator which is
an explicit non-symplectic Runge-Kutta integration
scheme of order 8.

DOP853: Hairer et al. 1993,
http://www.unige.ch/~hairer/software.html



Three part split symplectic
Integrators for the DNLS model

Three part split symplectic integrator of order 2, with 5

steps: ABC?
& /] 2
H = ©| (42 2\ P (42 2\° _ )
D ZI:(‘Z (ql + pl )+ 8 (ql + pl ) ‘ qn?n+1“ pn $n+lJ
A B C
T T T T
A “L, -L
2 A B L B A
ABC” = e2 g2 e"ce? g

This low order integrator has already been used by e.g. Chambers, MNRAS
(1999) — Gozdziewski et al., MNRAS (2008).
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2"d order integrators: Numerical results

3.2

3
2.8
2.6
24
2.2

2
1.8
1.6

0 1 3
logy t

B g| II I I

- b

] bl

- I (©)

o 1 2 3 4
log,,t

log,, T,

4

log,,t

ABC? t=0.005
SS? 1=0.02
SIFT? 1=0.05
DOP853 $6=10-16

E,: relative energy
error

S,: relative norm
error



4t order symplectic integrators

Starting from any 2" order symplectic integrator S2"9, we can
construct a 4% order integrator S*" using a composition
method [Yoshida, Phys. Let. A (1990)]:

S4th (T) — San (XlT) X San (XOT) X San (X]_T)
21/3 1

X, = - X, =

2_21/3 I 1 2_21/3

Starting with the 2"d order integrators SS? and ABC?2 we
construct the 4t order integrators:

«SS* with 37 steps
«ABC* with 13 steps



6th order symplectic integrators

As a higher order integrator, we use the 6 order symplectic

integrator ABC® having 29 steps [Yoshida, Phys. Let. A
(1990)]:

ABC’(t) = ABC?(w,1) x ABC*(W,T) X ABC? (W, T) X
x ABC?(w,t)x ABC? (W, T)* ABC? (W, T) X ABC?(W,T)

whose coefficients  w, =-1.17767998417887
w, = 0.235573213359357
w, =0.784513610477560

w, =1-2(w, +W, +w,)
cannot be given in analytic form.



High order integrators: Numerical results
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Summary

We presented several efficient integration methods suitable for
the integration of the DNLS model, which are based on
symplectic integration techniques.

The construction of symplectic schemes based on 3 part split
of the Hamiltonian was emphasized (ABC methods).

A systematic way of constructing high order ABC integrators
was presented.

The 4™ and 6™ order integrators proved to be quite efficient,
allowing integration of the DNLS for very long times.

We hope that our results will initiate future research both for
the theoretical development of new, improved 3 part split
Integrators, as well as for their applications to different
dynamical systems.



