# Symplectic integration methods for multidimensional Hamiltonian systems: Application to the disordered discrete nonlinear Schrödinger (DNLS) equation

#### Haris Skokos

Physics Department, Aristotle University of Thessaloniki, Greece

E-mail: hskokos@auth.gr

URL: http://users.auth.gr/hskokos/

Work in collaboration with

Enrico Gerlach, Joshua Bodyfelt, Siegfried Eggl, Georgios Papamikos

### **Outline**

- Symplectic Integrators
- Disordered lattices
  - **✓ The quartic Klein-Gordon (KG) disordered** lattice
  - ✓ The disordered discrete nonlinear Schrödinger equation (DNLS)
- Different integration schemes for DNLS
- Conclusions

# Autonomous Hamiltonian systems

Consider an N degree of freedom autonomous Hamiltonian system having a Hamiltonian function of the form:

$$H(q_1,q_2,...,q_N, p_1,p_2,...,p_N)$$

The time evolution of an orbit (trajectory) with initial condition

$$P(0)=(q_1(0), q_2(0),...,q_N(0), p_1(0), p_2(0),...,p_N(0))$$

is governed by the Hamilton's equations of motion

$$\frac{d\mathbf{p_i}}{dt} = -\frac{\partial \mathbf{H}}{\partial \mathbf{q_i}} , \frac{d\mathbf{q_i}}{dt} = \frac{\partial \mathbf{H}}{\partial \mathbf{p_i}}$$

# Symplectic Integration schemes

Formally the solution of the Hamilton equations of motion can be written as:

$$\frac{dX}{dt} = \left\{ H, \vec{X} \right\} = L_H \vec{X} \Rightarrow \vec{X}(t) = \sum_{n \ge 0} \frac{t^n}{n!} L_H^n \vec{X} = e^{tL_H} \vec{X}$$

where  $\vec{X}$  is the full coordinate vector and  $L_H$  the Poisson operator:

$$L_{H}f = \sum_{j=1}^{N} \left\{ \frac{\partial H}{\partial p_{j}} \frac{\partial f}{\partial q_{j}} - \frac{\partial H}{\partial q_{j}} \frac{\partial f}{\partial p_{j}} \right\}$$

If the Hamiltonian H can be split into two integrable parts as H=A+B, a symplectic scheme for integrating the equations of motion from time t to time  $t+\tau$  consists of approximating the operator  $e^{\tau L_H}$  by

$$\mathbf{e}^{\tau \mathbf{L}_{\mathbf{H}}} = \mathbf{e}^{\tau (\mathbf{L}_{\mathbf{A}} + \mathbf{L}_{\mathbf{B}})} = \prod_{i=1}^{J} \mathbf{e}^{\mathbf{c}_{i} \tau \mathbf{L}_{\mathbf{A}}} \mathbf{e}^{\mathbf{d}_{i} \tau \mathbf{L}_{\mathbf{B}}} + O(\boldsymbol{\tau}^{\mathbf{n}+1})$$

for appropriate values of constants c<sub>i</sub>, d<sub>i</sub>. This is an integrator of order n.

So the dynamics over an integration time step  $\tau$  is described by a series of successive acts of Hamiltonians A and B.

# Symplectic Integrator SABA<sub>2</sub>C

The operator  $e^{\tau L_H}$  can be approximated by the symplectic integrator [Laskar & Robutel, Cel. Mech. Dyn. Astr. (2001)]:

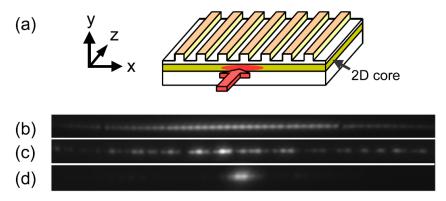
$$SABA_{2} = e^{c_{1}\tau L_{A}} e^{d_{1}\tau L_{B}} e^{c_{2}\tau L_{A}} e^{d_{1}\tau L_{B}} e^{c_{1}\tau L_{A}}$$
with  $c_{1} = \frac{1}{2} \cdot \frac{\sqrt{3}}{6}$ ,  $c_{2} = \frac{\sqrt{3}}{3}$ ,  $d_{1} = \frac{1}{2}$ .

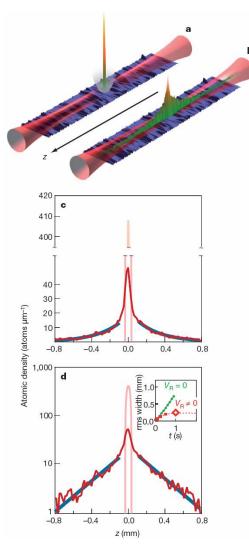
The integrator has only small positive steps and its error is of order 2.

In the case where A is quadratic in the momenta and B depends only on the positions the method can be improved by introducing a corrector C, having a small negative step:

$$C = e^{-\tau^3 \frac{c}{2} L_{\{(A,B\},B\}}}$$

with 
$$c = \frac{2 - \sqrt{3}}{24}$$
.


Thus the full integrator scheme becomes:  $SABAC_2 = C (SABA_2) C$  and its error is of order 4.


#### Interplay of disorder and nonlinearity

Waves in disordered media – Anderson localization [Anderson, Phys. Rev. (1958)]. Experiments on BEC [Billy et al., Nature (2008)]

### Waves in nonlinear disordered media – localization or delocalization?

Theoretical and/or numerical studies [Shepelyansky, PRL, (1993) – Molina, Phys. Rev. B (1998) - Pikovsky & Shepelyansky, PRL, (2008) - Kopidakis et al., PRL, (2008)] Experiments: propagation of light in disordered 1d waveguide lattices [Lahini et al., PRL, (2008)]





#### The Klein – Gordon (KG) model

$$H_{K} = \sum_{l=1}^{N} \frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2}$$

with fixed boundary conditions  $u_0 = p_0 = u_{N+1} = p_{N+1} = 0$ . Typically N=1000.

Parameters: W and the total energy E.  $\tilde{\varepsilon}_l$  chosen uniformly from  $\left\lfloor \frac{1}{2}, \frac{3}{2} \right\rfloor$ .

#### The discrete nonlinear Schrödinger (DNLS) equation

We also consider the system:

$$H_{D} = \sum_{l=1}^{N} \varepsilon_{l} |\psi_{l}|^{2} + \frac{\beta}{2} |\psi_{l}|^{4} - (\psi_{l+1} \psi_{l}^{*} + \psi_{l+1}^{*} \psi_{l})$$

where  $\varepsilon_l$  chosen uniformly from  $\left[-\frac{W}{2}, \frac{W}{2}\right]$  and  $\beta$  is the

nonlinear parameter.

Conserved quantities: The energy and the norm  $S = \sum_{l} |\psi_{l}|^{2}$  of the wave packet.

#### Distribution characterization

We consider normalized energy distributions in normal mode (NM) space

$$z_v \equiv \frac{E_v}{\sum_m E_m}$$
 with  $E_v = \frac{1}{2} \left( \dot{A}_v^2 + \omega_v^2 A_v^2 \right)$ , where  $A_v$  is the amplitude

of the vth NM.

Second moment: 
$$m_2 = \sum_{v=1}^{N} (v - \overline{v})^2 z_v$$
 with  $\overline{v} = \sum_{v=1}^{N} v z_v$ 

Participation number: 
$$P = \frac{I}{\sum_{v=1}^{N} z_v^2}$$

measures the number of stronger excited modes in  $z_v$ . Single mode P=1, equipartition of energy P=N.

#### The KG model

We apply the SABAC<sub>2</sub> integrator scheme to the KG Hamiltonian by using the splitting:

$$H_{K} = \sum_{l=1}^{N} \left( \frac{p_{l}^{2}}{2} + \frac{\tilde{\varepsilon}_{l}}{2} u_{l}^{2} + \frac{1}{4} u_{l}^{4} + \frac{1}{2W} (u_{l+1} - u_{l})^{2} \right)$$

$$B$$

$$e^{\tau L_{A}}: \begin{cases} u'_{l} = p_{l}\tau + u_{l} \\ p'_{l} = p_{l}, \end{cases}$$

$$e^{\tau L_{B}}: \begin{cases} u'_{l} = u_{l} \\ p'_{l} = \left[ -u_{l}(\tilde{\epsilon}_{l} + u_{l}^{2}) + \frac{1}{W}(u_{l-1} + u_{l+1} - 2u_{l}) \right] \tau + p_{l}, \end{cases}$$

with a corrector term which corresponds to the Hamiltonian function:

$$\mathbf{C} = \left\{ \left\{ A, B \right\}, B \right\} = \sum_{l=1}^{N} \left[ u_{l} (\tilde{\varepsilon}_{l} + u_{l}^{2}) - \frac{1}{W} (u_{l-1} + u_{l+1} - 2u_{l}) \right]^{2}.$$

## The DNLS model

A 2<sup>nd</sup> order SABA Symplectic Integrator with 5 steps, combined with approximate solution for the B part (Fourier Transform): SIFT<sup>2</sup>

$$\begin{split} \boldsymbol{H}_{D} &= \sum_{l} \boldsymbol{\varepsilon}_{l} \left| \boldsymbol{\psi}_{l} \right|^{2} + \frac{\beta}{2} \left| \boldsymbol{\psi}_{l} \right|^{4} - \left( \boldsymbol{\psi}_{l+1} \boldsymbol{\psi}_{l}^{*} + \boldsymbol{\psi}_{l+1}^{*} \boldsymbol{\psi}_{l} \right), \quad \boldsymbol{\psi}_{l} = \frac{1}{\sqrt{2}} \left( \boldsymbol{q}_{l} + i \boldsymbol{p}_{l} \right) \\ \boldsymbol{H}_{D} &= \sum_{l} \left( \frac{\boldsymbol{\varepsilon}_{l}}{2} \left( \boldsymbol{q}_{l}^{2} + \boldsymbol{p}_{l}^{2} \right) + \frac{\beta}{8} \left( \boldsymbol{q}_{l}^{2} + \boldsymbol{p}_{l}^{2} \right)^{2} - \boldsymbol{q}_{n} \boldsymbol{q}_{n+1} - \boldsymbol{p}_{n} \boldsymbol{p}_{n+1} \right) \\ \boldsymbol{B} \\ \boldsymbol{e}^{\tau L_{A}} : \begin{cases} q'_{l} &= q_{l} \cos(\alpha_{l} \tau) + p_{l} \sin(\alpha_{l} \tau), \\ p'_{l} &= p_{l} \cos(\alpha_{l} \tau) - q_{l} \sin(\alpha_{l} \tau), \\ \boldsymbol{\phi}_{l} &= e_{l} + \beta(q_{l}^{2} + p_{l}^{2})/2 \end{cases} \\ \boldsymbol{e}^{\tau L_{B}} : \begin{cases} \boldsymbol{\varphi}_{q} &= \sum_{m=1}^{N} \psi_{m} e^{2\pi i q(m-1)/N} \\ \boldsymbol{\varphi}_{q}' &= \boldsymbol{\varphi}_{q} e^{2i \cos(2\pi (q-1)/N)\tau} \\ \boldsymbol{\psi}_{l}' &= \frac{1}{N} \sum_{q=1}^{N} \boldsymbol{\varphi}_{q}' e^{-2\pi i l(q-1)/N} \end{cases} \end{split}$$

# The DNLS model

Symplectic Integrators produced by Successive Splits (SS)

$$H_{D} = \sum_{l} \left( \frac{\varepsilon_{l}}{2} \left( q_{l}^{2} + p_{l}^{2} \right) + \frac{\beta}{8} \left( q_{l}^{2} + p_{l}^{2} \right)^{2} - q_{n} q_{n+1} - p_{n} p_{n+1} \right)$$

$$\begin{cases} q'_{l} = q_{l} \cos(\alpha_{l} \tau) + p_{l} \sin(\alpha_{l} \tau), & p'_{l} = q_{l}, \\ p'_{l} = p_{l} \cos(\alpha_{l} \tau) - q_{l} \sin(\alpha_{l} \tau), & p'_{l} = p_{l} + (q_{l-1} + q_{l+1})\tau \end{cases}$$

$$\begin{cases} p'_{l} = p_{l}, & p'_{l} = p_{l}, \\ p'_{l} = p_{l} - (p_{l-1} + p_{l+1})\tau \end{cases}$$

Using the SABA<sub>2</sub> integrator we get a 2<sup>nd</sup> order integrator with 13

steps, SS<sup>2</sup>: 
$$SS^{2} = e^{\left[\frac{(3-\sqrt{3})}{6}\tau\right]L_{A}} e^{\frac{\tau}{2}L_{B}} e^{\frac{\sqrt{3}\tau}{3}L_{A}} \left(e^{\frac{\tau}{2}L_{B}}\right) e^{\left[\frac{(3-\sqrt{3})}{6}\tau\right]L_{A}}$$

$$\tau' = \tau/2 e^{\left[\frac{(3-\sqrt{3})}{6}\tau'\right]L_{B_{1}}} e^{\frac{\tau'}{2}L_{B_{2}}} e^{\frac{\sqrt{3}\tau'}{3}L_{B_{1}}} e^{\frac{\tau'}{2}L_{B_{2}}} e^{\left[\frac{(3-\sqrt{3})}{6}\tau'\right]L_{B_{1}}} e^{\frac{\tau'}{2}L_{B_{2}}} e^{\left[\frac{(3-\sqrt{3})}{6}\tau'\right]L_{B_{1}}} e^{\frac{\tau'}{2}L_{B_{2}}} e^{\frac{(3-\sqrt{3})}{6}\tau'} L_{B_{1}}$$

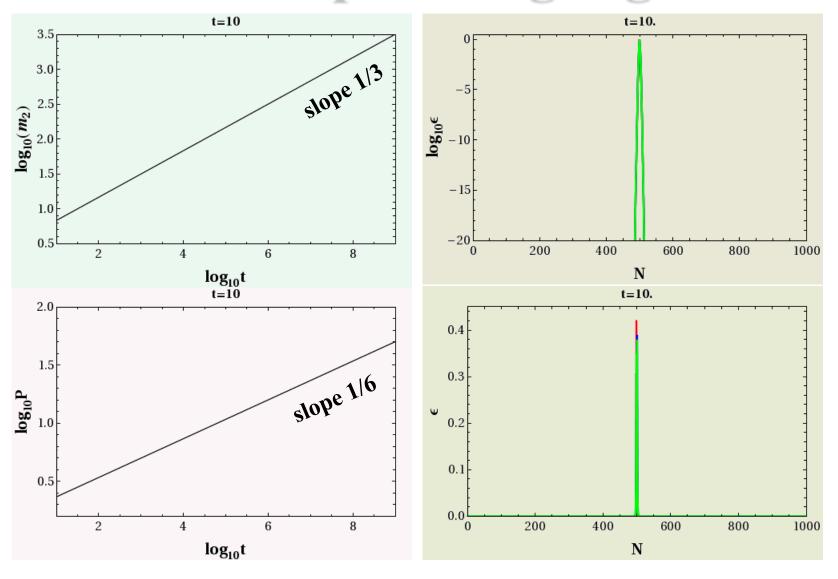
# Different Dynamical Regimes

Three expected evolution regimes [Flach, Chem. Phys (2010) - Ch.S. & Flach, PRE (2010) - Laptyeva et al., EPL (2010) - Bodyfelt et al., PRE (2011)]

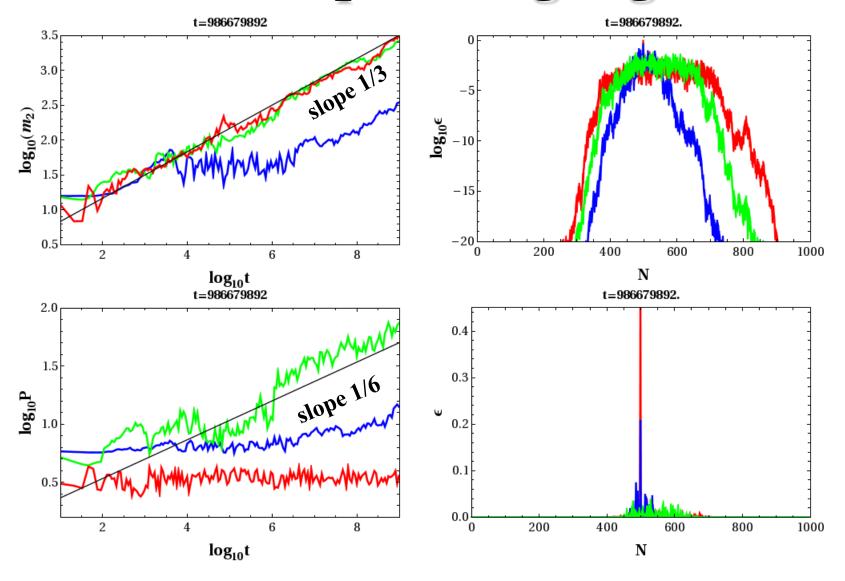
 $\Delta$ : width of the frequency spectrum, d: average spacing of interacting modes,  $\delta$ : nonlinear frequency shift.

Weak Chaos Regime:  $\delta < d$ ,  $m_2 \sim t^{1/3}$ 

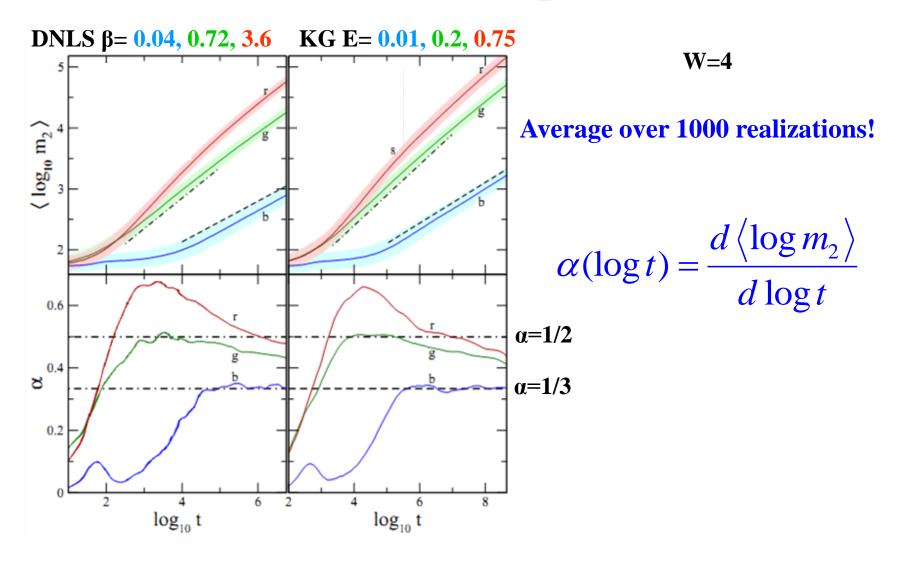
Frequency shift is less than the average spacing of interacting modes. NMs are weakly interacting with each other. [Molina, PRB (1998) – Pikovsky, & Shepelyansky, PRL (2008)].


Intermediate Strong Chaos Regime:  $d<\delta<\Delta$ ,  $m_2\sim t^{1/2} \longrightarrow m_2\sim t^{1/3}$ 

Almost all NMs in the packet are resonantly interacting. Wave packets initially spread faster and eventually enter the weak chaos regime.


#### Selftrapping Regime: $\delta > \Delta$

Frequency shift exceeds the spectrum width. Frequencies of excited NMs are tuned out of resonances with the nonexcited ones, leading to selftrapping, while a small part of the wave packet subdiffuses [Kopidakis et al., PRL (2008)].


# Different spreading regimes



# Different spreading regimes



# Crossover from strong to weak chaos



# Non-symplectic methods for the DNLS model

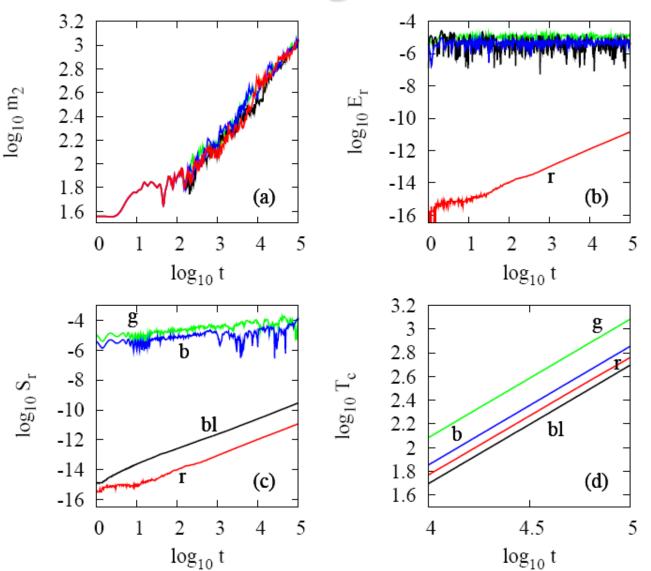
In our study we also use the DOP853 integrator which is an explicit non-symplectic Runge-Kutta integration scheme of order 8.

**DOP853: Hairer et al. 1993,** 

http://www.unige.ch/~hairer/software.html

# Three part split symplectic integrators for the DNLS model

Three part split symplectic integrator of order 2, with 5 steps: ABC<sup>2</sup>


$$H_{D} = \sum_{l} \left( \frac{\varepsilon_{l}}{2} \left( q_{l}^{2} + p_{l}^{2} \right) + \frac{\beta}{8} \left( q_{l}^{2} + p_{l}^{2} \right)^{2} - q_{n} q_{n+1} p_{n} p_{n+1} \right)$$

$$A \qquad B \qquad C$$

$$ABC^{2} = e^{\frac{\tau}{2} L_{A}} e^{\frac{\tau}{2} L_{B}} e^{\tau L_{C}} e^{\frac{\tau}{2} L_{B}} e^{\frac{\tau}{2} L_{A}}$$

This low order integrator has already been used by e.g. Chambers, MNRAS (1999) – Goździewski et al., MNRAS (2008).

# 2<sup>nd</sup> order integrators: Numerical results



ABC<sup>2</sup>  $\tau$ =0.005 SS<sup>2</sup>  $\tau$ =0.02 SIFT<sup>2</sup>  $\tau$ =0.05 DOP853  $\delta$ =10<sup>-16</sup>

E<sub>r</sub>: relative energy error

S<sub>r</sub>: relative norm error

# 4<sup>th</sup> order symplectic integrators

Starting from any  $2^{nd}$  order symplectic integrator  $S^{2nd}$ , we can construct a  $4^{th}$  order integrator  $S^{4th}$  using a composition method [Yoshida, Phys. Let. A (1990)]:

$$S^{4th}(\tau) = S^{2nd}(x_1\tau) \times S^{2nd}(x_0\tau) \times S^{2nd}(x_1\tau)$$

$$x_0 = -\frac{2^{1/3}}{2 - 2^{1/3}}, \qquad x_1 = \frac{1}{2 - 2^{1/3}}$$

Starting with the  $2^{nd}$  order integrators  $SS^2$  and  $ABC^2$  we construct the  $4^{th}$  order integrators:

•SS<sup>4</sup> with 37 steps •ABC<sup>4</sup> with 13 steps

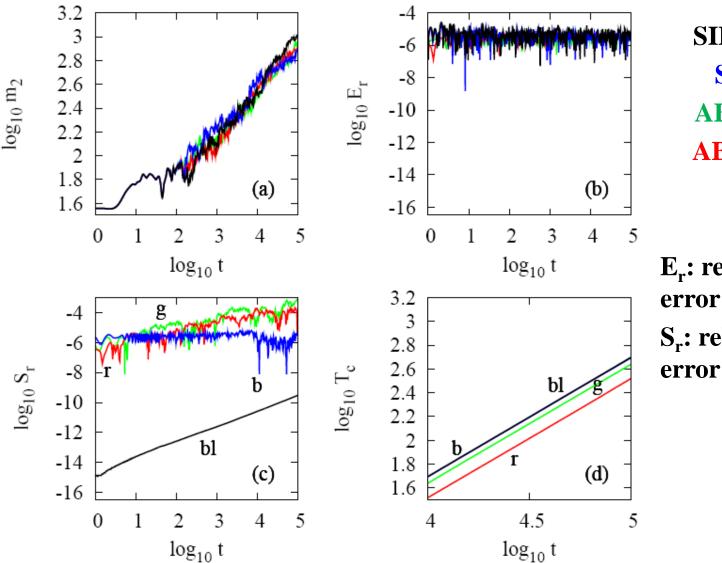
# 6<sup>th</sup> order symplectic integrators

As a higher order integrator, we use the 6<sup>th</sup> order symplectic integrator ABC<sup>6</sup> having 29 steps [Yoshida, Phys. Let. A (1990)]:

$$\mathbf{ABC}^{6}(\tau) = \mathbf{ABC}^{2}(\mathbf{w}_{3}\tau) \times \mathbf{ABC}^{2}(\mathbf{w}_{2}\tau) \times \mathbf{ABC}^{2}(\mathbf{w}_{1}\tau) \times \mathbf{ABC}^{2}(\mathbf{w}_{1}\tau) \times \mathbf{ABC}^{2}(\mathbf{w}_{1}\tau) \times \mathbf{ABC}^{2}(\mathbf{w}_{2}\tau) \times \mathbf{ABC}^{2}(\mathbf{w}_{3}\tau)$$

whose coefficients

$$\mathbf{w}_{1} = -1.17767998417887$$


$$\mathbf{w}_2 = \mathbf{0.235573213359357}$$

$$w_3 = 0.784513610477560$$

$$\mathbf{w}_0 = 1 - 2(\mathbf{w}_1 + \mathbf{w}_2 + \mathbf{w}_3)$$

cannot be given in analytic form.

#### High order integrators: Numerical results



SIFT<sup>2</sup>  $\tau$ =0.05 SS<sup>4</sup>  $\tau$ =0.1 ABC<sup>4</sup>  $\tau$ =0.05 ABC<sup>6</sup>  $\tau$ =0.15

 $E_r$ : relative energy error  $S_r$ : relative norm

## **Summary**

- We presented several efficient integration methods suitable for the integration of the DNLS model, which are based on symplectic integration techniques.
- The construction of symplectic schemes based on 3 part split of the Hamiltonian was emphasized (ABC methods).
- A systematic way of constructing high order ABC integrators was presented.
- The 4<sup>th</sup> and 6<sup>th</sup> order integrators proved to be quite efficient, allowing integration of the DNLS for very long times.
- We hope that our results will initiate future research both for the theoretical development of new, improved 3 part split integrators, as well as for their applications to different dynamical systems.